Chapter 11.2 part 3

Corollary 11.8 and its proof

On Corollary 11.8 and its proof.
Let $S: F \rightarrow E$ be a field isomorphism.
Prop "G extends to an isomorphism of the polynomial rings" The map $6: F[x] \rightarrow E[x]$
$F \subset F[x]$

$$
\begin{aligned}
a_{0}+\ldots+a_{u} x^{m} & \longmapsto \sigma\left(a_{0}\right)+\ldots+G\left(a_{m}\right) x^{m} \\
a & \longmapsto \sigma(a) \text { for } a \in F \\
x & \longmapsto x
\end{aligned}
$$

is a ring is amorphism
Notation: for a polynomial $f=a_{0}+\ldots+a_{m} x^{m} \in F[x]$ we write

$$
\sigma f=\sigma\left(a_{0}\right)+\sigma\left(a_{1}\right) x+\ldots+\sigma\left(a_{m}\right) x^{m} \in E[x]
$$

for the image of f under G (σf instead of $\sigma(f)$)

Thill.7(1) Let $K \supset F$ and, for $u \in K$ let $p \in F[x]$ be the minimal polynomial of u.
Then $F[x] /(p) \simeq F(u)$

Remark. Let $v \in K$ such that $P \in F[x]$ is the min poly also for v. Then $F(u) \simeq F(u)$

From the proof:
$s: F[x] \longrightarrow F(u)$
Fer $y=(p) \quad y$ is surjective
$f \longmapsto f(u)$
the isomorphism:

$$
\begin{aligned}
\overline{y:} F[x] /(p) & \sim F(u) \\
{[f] } & \longmapsto f(u)
\end{aligned}
$$

Similarly, consider $\sigma p \in E[x]$, Let σp be the miniceal polynomial for $v \in L$ for a field extension $L \supset E$.

$$
\begin{aligned}
\tau: & E[x] \\
f & \longrightarrow E(x) \\
& \longmapsto f(x) \\
\bar{\tau}: E[x] /(o p) & \sim E(x) \\
& {[f] }
\end{aligned}
$$

$\operatorname{Cor} 11.8 \quad$ 6: $F \rightarrow E$ is a field isomorphism
u is algebraic over F with its min poly $p \in F[x]$

Then there exists $\bar{B}: F(u) \longrightarrow E(r)$ - field isomorphism e such that $\bar{\sigma}(c)=\sigma(c)$ for every $c \in F$

$$
\widetilde{\sigma}(u)=v
$$

Pf

"j extends σ "

$$
\begin{gathered}
F(u) \xrightarrow[G]{\vec{\sigma}} E(v) \\
|=v| \\
F \xrightarrow[\sigma]{ } E
\end{gathered}
$$

Notation f: $E[x]$
f
J is surjective
We fare constructed so fax:

$$
F[x] \underset{\simeq}{\simeq} E[x] \underset{\text { surjective }}{\pi} E[x] /(\sigma p) \xrightarrow{\tau} E(v)
$$

The composition $\bar{\tau} 0$ Tod is surjective (beause all three maps are surjective)
The kernel consists of $h \in F[x]$ such that $(\sigma h)(r)=O_{E}$
ifs oploh

$$
\begin{array}{ll}
\sigma h=k \sigma p & k \in E[x] \\
h=\sigma^{\prime \prime} k \cdot p & \sigma^{-1} k \in F[x]
\end{array}
$$

$h \in F[x]$ is in the kernel of the composition map $\bar{\tau} \cdot J_{0} \sigma$ of h is a multiple ($\sigma^{-1} k$ is an arbitrary polynomial of p in $F[x]$)

The kerned $\operatorname{ker}\left(\bar{\tau}_{0} J_{0} 0\right)=(p)$
$\bar{\tau} \cdot$ Jo 0 : $F[x] \longrightarrow E(v)$ is surjective
The Jirst Isom-m Tim implies the isomorph we know from Th $11.7(1)$

$$
\Theta: F[x] /(p) \leadsto E(v)
$$

$$
F[x] /(p) \simeq F(u)
$$

notation
$[f] \longmapsto(o f)(v)$
$[x] \longmapsto v$ Thus $E(v) \simeq F(u)$.

$$
\begin{array}{ll}
F(u) \stackrel{\bar{y}}{\simeq} F[x] /(p) \stackrel{\theta}{\longleftrightarrow} E(v) & \\
f(u) \longleftrightarrow[f] & \longleftrightarrow(\sigma f)(v) \\
c & \longleftrightarrow[c] \longmapsto \sigma(c)
\end{array} c \in F .
$$

$$
\begin{aligned}
& \bar{\sigma}=\theta \circ \bar{\varphi}^{-1}: F(u) \longrightarrow E(x) \\
& \bar{\sigma}(c)=\sigma(c) \\
& \bar{\sigma}(u)=v
\end{aligned}
$$

